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Abstract

A study of numerical attributes peculiar to an overset grid ap-
proach to unsteady acrodynamics prediction is presented. At-
tention is focused on the effect of spatial error associated with
interpolation of intergrid boundary conditions and temporal
error associated with explicit update of intergrid boundary
points on overall solution accuracy. A set of numerical exper-
iments are used to verify whether, or not, the use of simple
interpolation for intergrid boundary conditions degrades the
formal accuracy of a conventional second-order flow solver,
and to quantify the error associated with explicit updating
of intergrid boundary points. Test conditions correspond to
the transonic regime. The validity of the numerical results
presented here are established by comparison with existing
numerical results of documented accuracy, and by direct com-

parison with experimental results.

INTRODUCTION

Computation of unsteady viscous flows for geomet-
rically complex bodies involving relative motion be-
tween component parts represents an important class
of problems for which accurate methods of predic-
tion are required. There are numerous applications
of this type; launch vehicle staging, aircraft store sep-
aration, crew escape mechanisms, and lelicopter ro-
tor/body interaction. Present engincering tools are in-
adequate for risk-free analysis of this class of problems,
and trial-and-error testing has become too expensive
and time-consuming. Mature computational methods
such as empirically-modified, three-dimensional panel
codes and nomnlinear potential methods have been ap-
plied to these problems, but have not been completely
successful. Unsteady viscous flowfields involving mov-
ing shocks, vortical wakes, interference effects and body
motion demand the most advanced computational tech-
niques available.

Currently, the only viable high-order method of predic-
tion for these problems is the so called Chimera[l], or
overset grid approach. The approach involves the de-
composition of problem geometry into a number of ge-
ometrically simple overlapping component grids. Grid
components associated with moving bodies move with
the bodies without stretching or distorting the grid sys-
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tem. The structure of individual grid components facil-
itates viscous boundary layer resolution, and the use of
implicit time-integration algorithms which are not held
to the prohibitively low time-step limits characteristic
of explicit schemes.

It is reasonable to presume that a solution method that
has been verified to accurately predict the flow dynam-
ics for a given application would also provide an accu-
rate prediction for a new application, providing that the
new geometry and flow conditions do not vary widely
from those of the verified point of reference. If this were
not the case, there would be no point in using computa-
tional methods of prediction, since construction of the
test article, or prototype, would always be needed to
verify the correctness of the prediction. Overset grid
methods have been applied to a wide variety of problems
and flow regimes. Carcful verification studies have been
carried out for many non-moving body cases [2,3,4,5,6].
However, data sets are usually only complete enough
to verify the correctness of surface pressure predictions,
and verification of moving body problems is practically
impossible except for ideal cases. Accordingly, verifica-
tion of the predictive ability of overset grid methods is
an ongoing process. Of conrse, this is true of methods
for Computational Fluid Dynamics (CFD) in general.

The objective of the present work is to explore basic
attributes peculiar to an overset grid approach as they
relate to accuracy in predicting the unsteady aerody-
namic fields in moving body problems. The formal so-
lution accuracy of the basic Navier-Stokes solver em-
ployed here[7] will be taken as a given. Attention is
focused on the effect of spatial error associated with in-
terpolation of intergrid boundary conditions and tem-
poral error associated with explicit update of intergrid
houndary points on overall solution accuracy.

DISCUSSION

An overset grid discretization of the space about geo-
metrically complex bodics is comprised of a system of
overlapping body-fitted grids and topologically simple
background grids. The body-fitted grids extend a rela-
tively short distance from body surfaces and are overset
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maintain formal solution accuracy. In practical appli-
cations, given a fixed number of grid points, it is not
possible to provide grid resolution of sufficient density
to guarantee that flow features will always be smoothly
represented in the grid. If a conservative interpola-
tion scheme (e.g., see reference [11]) is used at inter-
grid boundaries, the speed and structure of flow features
(i.e., shocks, vortices, etc.) can be maintained through
grid interfaces. However, lacking sufficient grid resolu-
tion, the accuracy of the solution cannot be ensured in
any case. Hence, the issue with domain connectivity is
not necessarily one of conservative versus nonconserva-
tive interpolation, but one of grid resolution,

If solution adaption is used to ensure smooth variation
of dependent variables throughout tlie computational
space of overset grid systems, the resulting solutions
will accurately approximate the governing differential
equations in all respects. This point is demonstrated
in subsequent paragraphs of this paper via a set of nu-
merical experiments. The method of solution adaption
suggested here is that of oversetting fine grid compo-
nents where flow gradients/error indicators are high, as
opposed to resorting to point redistribution methods.

Steady Transonic Airfoil Examples

Consider the steady fHow over a NACA 0012 airfoil
at Mach 0.8 freestream conditions and 1.25° angle-of-
attack. These conditions result in a strong shock on
the airfoil upper surface, and a very weak shock on the
lower surface (see Figure 2). This flow situation has
been used as a benchmark test condition for an AGARD
advisory report on inviscid flow ficld methods[12). In
order to use the AGARD results as a point of refer-
ence for the present discussion, inviscid conditions have
been imposed here also. This simplification in no way
diminishes this case as a test of the cffect of intergrid
imterpolation on solution accuracy.

The approach here is to carry out a grid refinement
study and observe the rate at which the numerical er-
ror tends to zero. The error should decay at a second
order rate since both the interior differencing schieme
of the flow solver and the intergrid boundary interpola-
tion scheme are second order. In order to correctly de-
termine the numerical error associated with the present
overset grid solutions, the exact Eunler solution must bhe
available. Unfortunately, the exact solution is unknown.
Therefore, the single very fine grid solution shown in
Figure 2 is used in licu of the exact solution. The single
very fine grid solution is referred to hercafter as STA-
S-1 (Steady Transonic Airfoil - Single grid - case 1).

The STA-S-1 solution was obtained using 643 poiuts in
the azimuthal direction (J), and 131 points in the sur-
face normal direction (K). Since the flow solver used
licre is fully 3D, the present 2D problem was simulated

using 3 planes of 643 x 131 points. This spacing is twice
that of the finest AGARD solution. In addition to STA-
S-1, four overset grid solutions of the same problem were
carried out using grids of varying resolution. The nam-
ing convention adopted for the overset grid solutions is
STA-M-X. The *M” stands for multiple grid case, and
“X" stands for the particular case number referenced in
Table 1. Table 1 gives statistics of the grid systems for
each case presented in this section.

The overset grids are cach composed of a body-fitted
grid for the airfoil, and a background Cartesian grid
of corresponding resolution. The body-fitted grids are
each subsets of STA-S-1. For example, STA-M-1 is iden-
tical with STA-S-1 for all points in J and all points in
K out to K = 61. STA-M-2 was obtained by using
every other point from STA-M-1 in both the J and K
directions. STA-M-3 was obtained by using every third
point in J and K. STA-M-4 was obtained by using ev-
ery sixth point in J and K. Siuce all overset grids have
points in common with STA-S-1, the point-wise numer-
ical error in each oversct solution can be computed as
a simple difference with the STA-S-1 solution. Figure 3
shows a plot matrix of the error which resulted on each
overset grid solution. The top row shows solution error
in the coarse overset solution (STA-M-4) with respect
to the single very fine grid solution (STA-S-1). Moving
from top-to-bottom, the error plots correspond to in-
creasingly fine overset grid solutions. The first column
of plots in Figure 3 is the local error in mass density.
The second and third columns are the local error in
X-momentum and total energy, respectively. Figure 4
shows the rate at which the error decays as a function
of grid resolution. The error represented in Figure 4 is
the rms error of the error fields shown in Figure 3. The
solid lines shown in Figure 4 represent first and second
order slopes (i.e.. 2nd order implies that doubling the
number of grid points will reduce the error by a factor

of 4).
The error reduction from the STA-M-4 to STA-M-3 so-

lutions is second order in all low variables. This is also
true for the scalar variables (p and e) throughout the
range of grid refinement. However, the vector variables
(pU and pW) drop to a nearly first order slope between
the STA-M-3 and STA-M-2 solutions. The reason for
this is that the reference solution (STA-S-1) is not ex-
act. As the resolution of the overset grids approaches
that of the reference STA-S-1 case, the error computa-
tions become invalid.

Surface (' plots are presented in Figures 5 and 6. Fig-
ure 5 provides a comparison with the finest AGARD so-
lution and the present STA-S-1 and STA-M-1 solutions.
Clearly, the three solutions are in very good agreement.
Figure 6 provides a comparison with the finest AGARD
solution {again) and two relatively coarse-grid solutions,
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fully implicit, a temporal error will result. Full aircraft
applications can involve as many as 100 grid compo-
nents, perhaps more. At what point does the temporal
error associated with explicit intergrid boundary up-
dates become significant? The second concern relates
to numerical stability. As a domain is decomposed into
more and more grid components, the lagging of inter-
grid boundaries makes the overall solution procedure
more explicit. Indeed, in the limit as the domain is de-
composed into as many grid components as there are
grid points, the scheme is reduced (in essence) to Point
Jacobi. At what point, then, does stability become a
real issue?

Unsteady Transonic Oscillating Airfoil Ezamples

In order to explore the questions posed above, con-
sider the case of an oscillating airfoil subject to tran-
sonic flow conditions. Specifically, consider a NACA
64A010 airfoil subject to Mach 0.796 freestream condi-
tions and forced oscillation of constant amplitude. The
specific case to be considered here is defined in Ta-
ble 3, and results in an attached boundary layer and
weak moving upper and lower surface shocks. The mo-
tion of the shocks, and unsteady acrodynamic loads are
driven by the amplitude and frequency of oscillation of
the airfoil. As with the steady-state cases considered
previously, the approach here is to determine numer-
ical error relative to a very fine benchmark solution.
The benchmark solution is referred to as UTOA-S-1
(Unsteady Transonic Oscillating Airfoil - Single grid -
case 1). Like the STA-S-1 case of the previous section,
the UTOA-S-1 grid has 643 points in the azimuthal di-
rection (J), and 131 points in the surface normal direc-
tion (K) (see Figure 10). Relative to a dimensionless
chord length of nnity, the initial spacing away from the
wall is 1 x 1078,

In order to isolate the error and stability concerns at-
tributable to the explicit updating of intergrid bound-
ary points, the UTOA-S-1 grid was decomposed in a
special way to form the basis for the five multiple grid
computational cases indicated in Table 4 (note that the
“M” in Table 4 nomenclature indicates Multiple grid
case). For example, the UTOA-S-1 grid was decom-
posed into the two overlapping grids indicated in Figure
10 (UTOA-M-1). Both grid components in the UTOA-
M-1 grid are exact subsets of the UTOA-S-1 grid. Inter-
grid boundary poiuts in the inner UTOA-M-1 grid are
coincident with interior points of the outer UTQOA-M-1
grid. Likewise, intergrid boundary points on the outer
UTOA-M-1 grid are coincident with interior points of
the inner UTOA-M-1 grid. As a result, there is no
interpolation error associated with intergrid boundary
condition updates. Further, the procedure is spatially
conservative. The only possible source of error in the
computations, relative to the UTOA-S-1 benchmark so-

lution, is the explicit nature of the intergrid boundary
updating procedure.

Adopting the same method of decomposition used to
realize the 2 component UTQA-M-1 grid system, the
UTOA-5-1 grid was decomposed into grid systems with
16 and 32 components (sce Figure 10). The 16 compo-
nent grid system corresponds to the UTOA-M-2 case
indicated in Table 4. The 32 component grid sys-
tem corresponds to the UTOA-M-3, UTOA-M-4, and
UTOA-M-5 cases indicated in Table 4. Cases UTQA-
M-1 through UTOA-M-3 correspond to simulations us-
ing the same time-step size as that employed in UTOA-
S-1, and allow the temporal error resulting from explicit
intergrid updating to be identified. Cases UTOA-M-3
through UTOA-M-5 correspond to simulations carried
out on the 32 component grid system for time-step sizes
of At =0.0025, 2 x At, and 4 x At, respectively. As a
result, cases UTOA-M-3 through UTOA-M-5 may fur-
nish some insight into the impact on stability of explicit
intergrid boundary updates.

The physical problem being solved in all the UTOA
cases indicated in Table 4 has heen studied experimen-
tally in the NASA Ames 11 x 11 foot wind-tunnel[13].
An attempt to verify the validity of the benchmark case
by comparison with experiment has been carried out.
However, due to circumstances ontlined below, the ex-
perimental data sct employed did not facilitate a con-
clusive solution validation comparison. This not with-
standing, the UTOA cases do provide important ref-
erence information regarding the numerical questions
immediately at hand.

The benchmark UTOA-S-1 unsteady solution was ini-
tiated from a necarly converged static (non-oscillating)
solution about the airfoil at mean angle-of-attack (a,, =
—0.21°). The surface C), distribution resulting from a
fully converged static airfoil case is shown in Figure 11,
along with the experimental results. The agreement
between the computation and experiment is very good.
However, there is a slight discrepancy in Cp magnitude
over the first 40% chord of the foil. The reason for this is
that the foil gcometry used in the computation is based
on the OSU definition of a NACA 64A010[14], rather
than the coordinates published in reference[13]. Figure
12 illustrates the differences in the theoretical, experi-
mental, and OSU definitions of the NACA 64A010 ge-
ometry. The definition used in the computations (OSU)
corresponds to the theorctical definition up to about
50% chord and then smoothly transitions to the exper-
imental definition. Figure 11 also contains a full poten-
tial solution to this problemt based on the theoretical
NACA 64A010 definition. The full potential solution
was provided for comparative purposes only. The com-
puted integral loads (Cy and C',,) are in good agreement
with the corresponding experimental results (see tabu-

862



crepancies between experiment and computed solutions
obtained using an overset grid approach. The present
results suggest that grid resolution is the primary issue.
If it is not possible to provide sufficient grid resolution
for a given problem, a conservative interface scheme is
preferable, but accuracy will be compromised whether,
or not, conservation has been maintained across grid
interfaces. The present study suggests the use of over-
set fine grids as a practical means of insuring smooth
representation of flow gradients in overset grid systems,
and hence, maximizing solution accuracy.

The steady state STA-M grid refinement study carried
out here indicates that formal solution accuracy is main-
tained in an overset grid system using tri-linear inter-
polation to supply intergrid bonndary conditions. The
results confirm that spatial error associated with inter-
polation of intergrid boundary data can be minimized
via overset fine grid components. This appears to be
true even if grid interfaces exist across shocks.

Explicit updating of intergrid boundary conditions did
not have a significant adverse affect on solution accu-
racy for the present UTOA cases, for which the solu-
tion domain was split into as many as 32 overlapping
grid components. Solution error attributable to explicit
updating of intergrid boundaries was observed to be
proportional to the time-step size employed, however
remained insignificant for all stable Af. The present
UTOA-M cases inherited no discernible stability penal-
ties as a result of the explicit mtergrid boundary up-
dates. These results suggest that unsteady problems of
practical importance (3D complex geometry) can be ac-
curately simulated using an overset grid approach pro-
vided that the time-step size is sufficient to resolve the
significant temporal gradients inherent to the problem.
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Table 1. Grid Refinement Cases

Table 3. Unsteady Transonic Oscillating Airfoil
(UTOA) Test Conditions

Case1 Grid52 Type JM x KM
AGARD 1 0 320 x 64
STA-S-1 1 0 643 x 131
STA-S-2 1 0 215 x 44
STA-M-1 2 (0] 643 x 61
BC 309 x 195
STA-M-2 2 o) 322 x 31
BC 155 x 97
STA-M-3 2 o] 215 x 21
BC 103 x 65
STA-M-4 2 o] 108 x 11
BC 51 x 33
STA-AG 7 (0] 215 x 21
BC 103 x 65
FBF 25 x 21
FBF 31 x 21
FBF 37 x 17
FBF 39 x 21
FC 22 x 25

1 Outer boundary is 25 chords

in all cases.
2 Type legend:
O = IIOII

topology

BC = Background Cartesian
FBF = Fine Body-Fitted

FC = Fine Cartesian

ID
Foil
M

55

0.796

12.56 x 10°
a, cos(wt)

[+]
-0.21
1.01°
0.202

34.4
0.248
0.500
336

* See reference (13]

NASA TM-81221* Case ID
NACA 64A010
Free Stream Mach

Reynolds Number

Oscillatory angle of
incidence

Mean angle-of-attack

Oscillatory pitch amplitude

Reduced frequency

X = wl/20
w = 2xf
Frequency (Hz)

Pitch axis w/r leading edge
Chord length (m)
Sonic speed (m/s)

Table 2. Computed Loads

Case Ch Cy Cy

AGARD 0.0230 0.3632 -0.0397
scatter* #0.0023 20.0273 +£0.0072
STA-S-1 0.0145 0.3403 -0.0359
STA-M-1 0.0155 0.3569 -0.0394
STA-M-2 0.0148 0.3372 -0.0357
STA-M-3 0.0152 0.3463 -0.0361
STA-M-4 0.0195 0.3085 -0.0319
STA-AG 0.0162 0.3487 -0.0358

* Scatter given in AGARD report[12]

is based on 9 Euler solutions to

the present flow conditions from

varying solvers,
and grid type.

grid densities,
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Table 4. UTOA Test Cases

UTOA-M-5

tive.

Case Grids At
UTOA-S-1 1 0.0025
UTOA-M-1 2 0.0025
UTOA-M-2 16 0.0025
UTOA-M-3 32 0.0025
UTOA-M-4 32 0.0050

32 0

Case UTOA-S-1 is the
benchmark case.

Cases UTOA-M-1 through
UTOA-M-5 are multiple
grids cases which have
zero interpolation error,

and are fully conserva-
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